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Abstract

Most optical flow algorithms provide flow fields as single wedufunctions of the image sequence domains.
Only a very few of them attempt to recover multiple motiontees at given location, which is necessary when some
transparent layers are moving independently. In this tepeintroduce a novel framework for modeling multivalued
motion fields, and propose an energy minimization formatatwith smoothing terms and terms implementing
velocity model competition. We illustrate the capabibtief this approach on synthetic and real sequences.
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I. INTRODUCTION

There exists a very wide literature on apparent motion egton, also called optical flow. Such a craze
for optical flow is notably due by the number of applicatiohattrequire some motion estimation to
perform their tasks. We refer the reader to [6], [7], [2], {Bf some reviews on this topic. Although less
models are proposed concerning multiple motions, it is anviction that considering more complex
stimuli will also bring some new solutions and ideas for dienpptical flow estimation.

In this paper we propose a framework based on a finite samplirtge space of velocities. Having
chosen a finite set of admissible velocities, our goal is tover a coherent spatio-temporal field that
encodes at each location the presence of one or more ve&itm our sample set. To recover such a
field, we start with local velocity measurements, and thenmir@imize an energy function that encodes
our prior knowledge about the optical flow smoothness andettpected number of motions (relatively
small, says one or two) at a particular site of the image.

The paper is organized as follows. Section Il reviews and menis on some related works on
multiple motion estimations. Then Section Ill describes giroposed framework and related notations
are introduced. Section IV states a discrete variationadehto handle multiple motions, and the role of
each term in the resulting energy is discussed. The perfuwenaf the approach is illustrated in Section
V, on synthetic, synthesized realistic and real sequeesconclude and present furture work in Section
VI.

This work is simultaneously published as internal reseaegort in theINSTITUT NATIONAL DE
RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE (INRlA@port number 5920, electronic
addressttps://hal.inria.fr/inria-00077285

II. RELATED WORK ON MULTIPLE MOTION ESTIMATION FOR TRANSPARENTSEQUENCES

Motion estimation methods rely on a form for data conseovatilong motion trajectories and some
spatial or spatiotemporal regularity. Regularity in thahtext corresponds to some local smoothness
assumption of the motion field. The most elementary form @& d@nservation and probably the most
used is the Lambertian assumption, or brightness constamgh states that intensities remain constant.
Given a sequenc¢(x,t) = f(x1,x9,t), then the conservation can be stated as Displayed Frame
Difference Equatior(DFD)

f(X_u7t+1>:f(Xat)' (1)
or the linearization of it, th@ptical Flow Constraint EquatioffOFC)
9 o 0 u
_— — T 2|
( ot at) foer) = (V16 0)" | <0 @

whereV f = (fu., fen, f:)T and(u!, u?) are the spatial components of the velocity veatoiThe gradient
V f provides an affine constraint on the velocity space and iseiores refereed to as a “motion constraint
vector.”

Although widely used, this model has a well known limitedig#y, intensities do not always remain
constant due to, among others, changing lightning conditispecularities and clearly it cannot cope with
multiple motions, especially in the case of transparency.

Transparency can be modeled as a superposition of movirggslag linear superposition meaning
addition of layer intensities, or a generalized one [9] wehietensity addition is replaced by an operation
with similar formal algebraic properties such as multiation in reflection. A simple superposition model
was introduced by Buréet al. in [10] for the case of two motions. The observed image secgig¢nis
assumed to come from the combinatipn= P, & P, of two moving patterns®, and P, with respective
motionsu; andu,, such that brightness constancy hold for eaeh u;):

Pi(x —u;, t + 1) = Py(x,t)
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or
u

(VPi(x, 1) | ui

(2

1

[CEA

=0.

In the mere case of linear superposition, i.e. when the coatilon operatiomp is just a pixelwise addition
f = P, + P, then one gets

fx—w,t—1)— f(x,t) = Pj(x —u;, t — 1) — Pj(x,t) =: D;j(x,1) (3)

where(i, j) = (1,2) or (2,1) and the displaced frame difference is non zeros, but oneeopdterns has
been eliminated. In the case that the motion of each paRgei:constant on at least three frames at times
t—2,t—2 andt then the “difference patternD; satisfies the DFD &);(x —u;,t—1) — D;(x,t) = 0 and
assuming that; is known,«; can be computed by a single motion estimation technique. &uat. then
derive from this fact a three frames algorithm for estimgitin and u,. They start, in a multiresolution
setting, with a coarse estimate of (for instance), and use a single motion algorithm on theltiegu
difference patternD, in order to compute an estimate af. This estimate is then used to form the
difference patternD,; and get a new estimate af from it. This process is iterated until convergence.

A more thorough study and extension of this idea is proposed subsequent paper [11], where a
frequency domain interpretation, including multiresaat pyramid effects, is provided. In particular a
“dominant velocity extraction” mechanism is explainedddhe latter is used by Irani and Peleg in [12]
(see also [13]).

Starting from the linear superposition principle, Shizaavel Mase explore in a series of papers [14],
[15], [4] a frequency domain, total least squares formatawf the multiple motion problems. They start
from the single motion case, the OFC constraint equationg2gplaced by the spatiotempodatear
homogeneous one

u
(V)" (w2 ] =0, = (u'u’u’) #0 4)
3
u
or his frequency domain counterpart )
i wf(w) =0

wherew = (wy,ws,ws) are the spatial and temporal frequencies ﬁn’d the Fourier transform of ( the
2m+/—1 multiplicative constant has been dropped). In that casejmagg constant motion, the bastan
be retrieved as the minimizer of the energy

v (fwwt|f(w)2|dw> 7
Bl = S T

This is a total least squares problem whose solution is gagethe (an) eigenvector corresponding to the
smallest eigenvalue of theé x 3 symmetric, positive (semi-)definite matrix

A= /wwt|f(w)2|dw

which is aStructure Tensofsee [16], [17], [18] for instance). For the recoveryroimotions at a given
location, the linear, first order, constraint (4) is repthty an-th order,n-th multilinear one obtained by
“cascading” the linear first order ones. For example, in the motions case, the pafi;, u3) would be
a zero of the bilinear symmetric map

(01, 03) — 03" H(f)v; =0 (5)

where 'H is the spatiotemporal Hessian operator. Multilinear mags loe factored through linear ones
using the Tensor Product construction, and this leads tleemn tivo stages formulation of the multiple
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motion recovery as: first a total least squares computatiothen-th tensor power of the velocity space,
which singles out one element (in fact a line) of that spand, secondly a decomposition of this element
into a tensor product ai velocities. A closed-form formula for that decompositisrprovided in the case
n = 2, but becomes rapidly more complicated for higher ordersy Yecently, Motaet al. have extended
these ideas in [19] and dhlich and Aach have proposed an algebraic framework basdebmogeneous
parts of symmetric algebras in [20].

The very algebraic nature of the motion constraint in fregyedomain has lead Vernon to propose in
[21] an algorithm for the decoupling of moving patterns, lbath transparency and occlusion models. An
algorithm for the specific problem of reflections is proposgdZou and Kambhamettu in [22].

The non homogeneous form (witlf = 1) of equation (5) provides th2-folds optical flow constraint
equationas introduced by Shizawa and Mase in [15]:

0 9,0 0 o 0
1~ 2 Y v 1 9 , 0 a _
(Ul or o 375) (UZ e, om, at> flxt) =0 (6)

This form is used by Liwet al. in [23] with Hermite polynomial based differentiation fitteand specific
checks for the presence of single or multiple motions. Damdl Simoncelly “dualize” this constraint in
[24] in order to construct some Fourier “donuts” used to oespto one or more velocities. The 2-folds
optical flow constraint is used in the present work, in oraebuild local multiple motions “probes”.

The nonlinear form of this constraint then provides what omey call the2-folds displaced frame
difference equationand also used in this present work,

fx+u) +us,t+2)— f(x+u,t+1)— f(x+ust+ 1)+ f(x,t+2) =0. (7)

It can be extended to more than two motions and has been usstdrisg point by several authors. For
instance, Stuket al. use it in [3] to derive a block-matching approach to the rpldtimotion problem.

In their subsequent work [5], the authors regularized affgtthe block matching solution by promoting
smooth solutions with a Markov Random Field (MRF) framewonpioving the noise robustness of the
method. However, finding a solution results ic@mputationally heavy minimizatiqivecause of the use
of a field of binary indicator variables) and complex (due tstatistical confidence test used to discern
the number of motions at each pixel).

Starting with equation (7), Pingauwdt al.in [25] perform aN-th order Taylor expansion around velocity
values. A multi-resolution non linear least squares egtonds performed, using a Levenberg-Marquardt
algorithm. Recently, Auvrayet al. proposed in [26] an algorithm based on equation (7). The oaketh
is also multi-resolution, uses a simplex algorithm for m#ialization and adds a postprocessing step,
especially efficient when the two velocities are “close”.

The approaches described above are based on a single higlegr aonstraint designed to “react”
to multiple motions. In the other hand, a series of methodge Haeen developed by incorporating
several single, low order, motion constraints. When deahit transparency, they all use an essentially
unmentioned idea of a local dominance of one of the layer®messpatiotemporal neighborhood of the
image sequence. These local dominances are scatteredimape plane/volume and are associated with
different layers at different positions. We will now dedaia few of these approaches.

In the robust statistics approach of Black and Anandan [27, transparency is treated through
a segmentation approach. The image plane is assumed to tigoped into regions, each but one
corresponding to a parametric motion modek= u(a), a being the parameter vector for the region.
This is done by iteratively estimating on a regiéh a dominant motion(a;), the inlier pixel regionR;
for that motion and the outlier regio®; ., = O; — R;, providing, aftern iterations the decomposition

RIUR,U...R,UO,

whereR; moves with velocityu(a;), : = 1...n and O,, is the final outlier region. In their paper, they
apply the strategy to a image péif;, I;) with n = 2. The motion parameters anda, are then assumed
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to represent the motion of two layers that cover the entiragienplane. These layers are recovered by a
nulling process

Ly = L(x —u(ay)) — I
L1 = IQ(X — U(CLQ)) — Il.

The authors describe the process as a “no-model” one (wdpert to transparency) and as a limited
one. It is however clear that authors assume that transparemue to superposition of moving patterns,
through the ways these patterns are recovered, via a nylliogess similar to the one of [10].

Mixture models for multiple motion computation have beetrdduced by Jepson and Black in [28],
[29]. A parametric layered flow model is considered. One m&suthat the motion can be explained by
up to N parametric motion fields with parameter vectays As input, one uses motion vector constraints
as mention above, and the probability of observing condtraiat locationr, assuming velocity layen
is given byp,(c.|r,d,). In order to take outlier measurements into account, a mimet is added in a
“zero-th layer’py (¢, ). Assume then that each layer is given the probabilitpf being selected (including
1 = 0 and thus requesting th@fvzo a; = 1), then one can write the mixture model for a constrajnt

N
P (5r|7", (@)i:l...Na (ai)i:O...N) = Z Oéipi(grh’, 56})-
i=0

The problem is then to compute the best mixture and motioameaters(«;, a;);. This is usually done
using EM-like algorithms.

Ju, Blacket al [30] proposed the “Skin and Bones” model, in which multi-legek affine models are
defined on small rectangular patches of the image (bone=s),ah ownership field defines the likelihood
that each pixel comes from a particular layer. The goal isolwesfor the affine model parameters and
the ownership field. This is done within a robust estimati@mfework using an EM-algorithm. An inter-
patch regularization (skin) term introduces a regulamraeffect in the model parameters estimation.
Another layered representation is proposed by Bleckl. in [31]. In that approach, they consider that
multiple motions may appear due to occlusions and limitethfof transparency. The method introduces
models for illumination changes and specular reflectiond,alows one to eliminate them, improving the
computation of the optical flow of the scene. In this formigiat a set of membership weights are computed
in order to indicate which layer is more likely to belong toemion. Although the method captures the
changes in illumination, it does not allow to compute theiggbtflow of moving transparencies. Weiss
and Adelson [32] and recently Rivera et al. [33] proposed Edeud approaches for computing different
layered motion models in an image sequence and its segnoentzised on these models. They use
as prior knowledge the smooth feature of the velocities. 3tiation in such cases is given by a field
of probabilities measures that indicates layers ownershgst methods produce pixel-wise unimodal
solutions (single motions) because of the use of a distaressune for single motions as well as their
entropy controls.

This section has focused on optical flow recovery and doesnchide some of the related questions,
and the especially important one of layer recovery, at theeptton of [21], [22]. We mention here the
work of Toro et al. [34] where the knowlegde of motion is fundamental, as opgpdseto work of Sarel
and Irani [35], where such a separation is performed by opitigp some correlation measures. Also non
mentioned here are the perceptual/neurophysiologicacsmpf transparency.

I1l. PROBLEM STATEMENT: FROM LOCAL TO GLOBAL

Let us assume that we have an estimation of the likelihoodseft &@f velocities at each spatio-temporal
position. Our goal is to propose an approach which integitatelocal velocity information in order to
get a more global and robust velocity information. This gnéion is necessary for dealing with complex
motions (such as transparent motion sequences) and withoike, as we will see in the sequel.
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First, let is define a finite sampling of the velocity space, we considerV vectors

{uy,...,un},

describing the set of possible velocities (such a predefingd sampling of the velocity space is inspired
in the human visual cortex where the different cells are duteea specific velocity).

Given a gray-scale image sequerfce(x,t) € Q2x[0,7] — R, the input is set of functiong(f, r, u;) €
R*|;=1..n, Wherer = (z,t) stands for the spatio-temporal coordinates, describirgpeh position if the
velocity u; is likely, at alocal scale, at the position. We show in Figure 1 an illustration of a the velocity
space representation and we refer to Section IlI-A for thenedion of d(f,r, u;).

|.U-

U.{JI

Fig. 1. Example of a velocity space composed by 33 velocity vectorgifiggbthrough their magnitudes and orientations, respectively

{0,1,2,3,4} pixels and{0, &, %, 37,7, 37, 27, Zx} radians. The color indicates the likelihood of each velocity.

The goal is to compute the velocities (one or more) at eachosgamporal position. For this, we
will associate to each possible motian a variableo;(r) which indicates if such a model is present or
not inr. In order to obtain a robust solution, we perform an intéegraprocess over the local information
provided byd and introduce prior constrains about the possible numbesiméiltaneous motions in.
This will be explained in next subsections.

A. Computing Local Velocity Information

We first introduce here the general mechanism we have usedder ¢o select the local velocity
descriptors from multiple motion operators. We assume weaare given a family of such operators

M= {M®(u;, ... u), k=1,...N, iy <---<ig}

where M® (w;, ... u;, ) f(r) =~ 0 if the velocity vectorsu,,,...,u; explain the motion of the image
sequencef at ther position. In the case we concern hére= 1,2. For each vectow; in the base of
velocities , we consider the subget,, of all the operators involving,; and define

1 )
A(frow) = min M) ®)
where||M f(s)|l3. denotes the sum of the L2-norm &f f(s) for all s in the 3 x 3 spatial window center
atr.

When dealing with one motiork(= 1), two well known filters satisfy these requirements, the-hoear

correlation:
def

ME (i) f () = f(,t) = flo = wit = 1), (9)
and its differential counterpart

e 0 0 0
Ml(vl)(ui)f(%, Ta,t) = (uzla—xl + U¢28—$2 + §> [z, 22, 1).
Shizawa and Mase proposed in [4] to build multiple motionrap@'s for velocities, . .., v, as

M® (v, o) = MY (v1) ... MY (v



CIMAT, COMUNICACION TECNICA. 9

where products of the fornf. 7. are expanded a%.
On the other hand, cascading instead the nonlinear coorlflters Mc(l) provides the operatdws(k),
for instance fork = 2 we have
M§2)(U1,U2)f<l'7t) = f(y>7—)_f(y — U1, T — 1)_.f<y — U2, T — 1)+f(y — U1 — V2, T — 2)7
that corresponds to distance reported in Stuke et al. [3].

The local measurement! f,r, u;) used in this work have been derived frdmg), Mé”, M) and
M?, and we, therefore, place us in the additive framework modl¢10].

B. Objective: Motion Detection Variables

Based on the previous discussion, we define the problem umisha® the vector valued field such
that a vector in the position is

alr) = (ai(r),...,an(r)), ai(r)€0,1] Vre Qx][0,T],

thereforeq; () can be interpreted as the probability of observe the velagitat the position-. Note that
although the entries ak(r) are probabilitiesn(r) is not a probability measure (as in [32], [33]) in the
sense that it is not constrained to sum one. This is, if twoionetu; andw; are present at a particular
pixel position,r, then we expect that both associated probabilitigs) anda;(r) will be close to one.

In Section IV, we propose an approach for computing éheector field by means of a variational
integration process of the local informatidif, r, ;) (egn. (8)).

IV. GLOBAL MOTION INTEGRATION VIA A VARIATIONAL APPROACH
Let d(f,r, u;) defined as in Section Ill-A, we look for the velocity distrtimn minimizing the energy

E(a) = Z{Z d(f, 7 us)a(r) (10)
+ % Z Zwi(r, s)[ai(r) — ai(s))? (11)

siseNy i
A [cdg(r) . Z af(r)} } (12)

subject tow;(r) € [0, 1], Vi;
with a(r) e/ ~ >, a;(r), wherec is a positive scalar), and \. are some positive constants, the weights
w;(r, s) will be defined in the sequel antl, & {s: r,s € Qx [0, 7], ||r — s|| < 2} is the spatio-temporal
neighborhood of the position.

Before going more into details, let us give a general idea emtieaning of each term. The first term
(10) is called the attach term since it links the input (thectionsd’s) to the unknowna (see Section
IV-A). The second term (11), see Section IV-B, is a smoothiggnt and its role is to integrate local to
global motion estimation. The last term (12), see SectiofC)\gives a prior that controls the number
of active motion layers. The compromise between the last &mnd the attach term introduces a motion
model competition mechanism.

A. Attach Term

In order to compute the presence of thiln model, we use an approach related with the outlier rigject
method [36] and with the EM formulation [31], [32], [33], [BGRemind that functioni(f, r, u;) is close
to zero when the velocity;; explains correctly the motion at position and is a positive large value
otherwise. Minimizing term (10) with respect o;(r) producesc;(r) close to O for highd(f,r, ;)
values, indicating in this way that such a motion model is lil@ly at positionr. Otherwise, they;(r)
is free and its value is established by the next terms and dbedconstraint.
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B. Spatial Regularization

Term (11) allows us to integrate the local information byulegization, in order to obtain a more global
estimation. In the previous work of Stulet al[5] was noted the necessity of a spatial regularization
process. However, given that their approach is based ondhmutation of categorical variables, hard
(combinatorial) optimization methods are required, fostamce the computationally-expensive Gibbs
Sampler algorithm.

Differently, in our approach, spatial-temporal smootlsnagans that we want to diminish the difference
between the real valued vectafr) and the ones(s) in its neighborhood)V,.. Given that our indicator
variables are real valued, we can use differentiable pailswith the well-known algorithmic advantages.
We use the approach presented in [37] for achieving suchudamgzation, i.e. a directional one. Therefore
the smoothing process is controlled by directional fixedghts,

(s—m)"T;(s—r)

4
ls =]

w;(r, s) = ,
generated from thé”" tensor associated to thi& velocity model:l; = vI,+U;U;”, wherel, is the identity
matrix, v = 0.1 and U; = [u;1, use, 1T /||[us, use, 1]|| is @ homogeneous-coordinate unitary vector. For a
small y values these weightsy;(r, s), promote a strong smoothness along #ftevelocity direction, see
[37]. This is illustrated in Figure 2. As consequence piaige smooth optical flows are recovered and
the boundaries are well-defined along the velocity moded (esults in Figure 6).

Fig. 2. The diffusion coefficients);. The diffusion process is performed in the spatio-temporal neigloloorlof a given point, according
to the associated velocity;. The domain of influence is schematically represented by the circlesstférmgth of the influence of the point
r to the points then depends on the spatio-temporal distance betwesrd s, taking into account trajectories leavimgwith speedu;.

C. Intra-Model Competition

To introduce the intra-model competition prior, fundananh our approach, we first remind the
expected behavior of the attach term (see Section IV-A):eibeity u; explains locally the motion at
positionr, thend(f,r,u;) is small and consequently the correspondingvalue is not penalized. Since
our aim is to detect multiple simultaneously motions (tprent motions) and therefore we may have
severala’s switched-on at a given position. Thus we may have problatrsstes where multiple spurious
matches are locally detected, for example in homogeneaien® whered(f,r, u;) is small for many
(maybe all) the velocities. For this reason we need a meshamor eliminating spurious models (to
switch-off a’s) and to promote the valid ones, i.e., to recover almosafyirsolutions. So that, our intra-
model competition term should behave similarly to entropyirol potentials (as the Shannon’s or Gini’'s
used respectively in [32], [33]) in the sense of remove sugimodels. Although, in our case we need
a suitable term for a no measure of probabilities and mudtdah solutions (see subsection 1lI-B).

Thus, we use the contrast potential (12) that depends on(themean value and the parameteiThe
¢ parameter is very useful for controlling the number of shdtd-on models as will be explained bellow.

To understand the potential’s behavior, one can see thdirsthéerm penalizes the number of switched-
on models while the second term promotes to switch-on moaleds avoids the trivial solution: zero.
Therefore for a fixed mean value (controlled by the first teth® second term prefers high contrasted
solutions. It is important to note that our potential (12nhdae tuned such that for a givenvalue
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a multimodal solution (with two or more detected motionsy hawer energy than a unimodal one or
conversely. That makes an important distinction with respe entropy based measured that always have
lower energy for unimodal solutions [32], [33]. Additiohalour proposed potential, based on quadratic
terms, is easily differentiable and therefore simple mination algorithms can be used, for instance a
Gauss-Seidel scheme.

V. EXPERIMENTS
A. Algorithmic Details

Cost function€ («), defined by (10)—(12), is quadratic so that it can be minichizg solving the linear
system

0 ()

Oay(r)

with the constrainty;(r) € [0, 1]. This is achieved with a Gauss—Seidel iterative scheme,

— As ZSGNr wz‘(T, S)Oéi(s) — C/\Cd(prev) (7,)
Oéz(r> - d(fa r, UZ) +/\s ZSENT- wi(T, S) _ )\c )

that has the advantage of low memory requirements. The boandtraints onv;(r) are enforced by
projecting non-feasible values to bounds at each iteratenoted that for obtaining a smooth algorithm
convergence, was important to keep fixed the mean of theqarsvterationa® <) (r), for updating the
currenta(r) vector. This can be seen as an over-relaxation strategyniti@lly set o, (r) = 0.5, Vi, r.
Additionally, a Deterministic Annealing strategy in the parameter introduces thatra-model com-
petition once an approximate solution with valid representative elotiave predominant;(r) values.

For each iterationk = 1,2,...,n, we used\¥) = A.ar, Where \. is the chosen contrast level and
ap = 1 — 0.95109%/7) js a factor that increases to 1 in the approximately 90% ofttial number of
iterations,n. This deterministic annealing process ensures that tih@-mbdel regularization term (12) is
fully active only when a preliminary solution is availab\e note that the computed results are sensible
to the annealing speed of: a premature increment could lead us to an incorrect solutievertheless,
we used the same annealing scheduling in all our experiments

The tuning for the spatial regularization parameter istredly easy: the large , value eliminates noise
but a too large value over-smooth the solution, i.e. the omobioundaries are blurred. We found that
€ [50, 100] produced an adequate noise reduction in all theraxents.

According to our experiments the parametet 1 performs well for most noise-free synthetic sequences.
When one is processing noise-contaminated or real sequesmeal spurious models may be present
in the final solution because of false matches. So that, thmipent models are obtained by increasing
this parameter within the small interval< ¢ < 4.

One example of the used velocity basis is the one compose@® bel8city vectors, specified through
their magnitudes and orientations, respectiiglyl, 2, 3, 4} pixels and{0, %, Z, 37, 7, 2, 37, Ix} radians,
see Figure 3. We choose it according to the present displmsnin our test sequences, but a different
basis can be chosen depending on the problem. This changentbeaffect significantly a previous

parameter selection.

—0, Vi

(13)

B. Global Coherent Motion Estimation for Non Transparent MpotSequences

In this subsection, we experiment with non transparenteonatequences. The first example deals with
the aperture problem and motion integration, while the sdéltustrates the performances of our algorithm
on a real sequence.
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Fig. 3. Translating bar example. We show this evolution (small squares denote the associated velocities) for the iteratiober 1, 3,
5 and 10, for the 2 points marked in the figure on the left. The pseudoscéde for the range in the alpha values [0,1] is shown to the
right-hand side.

1) Minimization Procedure Performs Motion Integratioiihe first experiment concerns single motion
sequences and it shows how a correct global estimation @&naat based on local velocity estimations.
This integration is illustrated with a synthetic sequeritat tonsists of an oblique bar translating in the
horizontal direction (Figure 3).

Interestingly, some psychophysics studies show how matitegration is performed in tracking tasks.
In [38] is shown that the eyes will first follow the normal diten of the bar, according to 1D motion
detectors. Then, after few milliseconds, there is a caoeaif the pursuit toward the horizontal direction,
once 2D cues from ending points are integrated (That istifitesd by Figure 3 region B). These kind of
experiments suggest that there is a parallel processimgebat 1D and 2D motion signal with different
temporal dynamics and that some time is needed to extract fihem a stable response.

Figure 3 shows the evolution of the probabilitiesat two given spatio-temporal location, depending
on the convergence of the energy minimization. The integrgthenomenon can be observed, so that the
iterations of the optimization procedure can be intergtete time evolution in real experiments.

2) Non Transparent Multiple Motion SequencEigure 4 shows an example of the computed result with
our algorithm on a real sequence, callemhstguards . The background moves roughly horizontally
to the left, while the foreground object, a coastguard boatyes roughly to the right. For comparison
purposes some results computed with standard variatigg@mioaches [1], [2] are displayed. Figure 4
(b) shows the flow corresponding to the most probable velatitevery position. The orientation of the
solution is color-coded: the color associated to a eachht@ii®n is shown in the border of the image,
for instance, a red pixel in the image indicates a motion ®|#ft. In this case, as expected, unimodal
solutions are obtained.

(@) (b) () (d)

Fig. 4. Optical flow in real scene (single motion case). (a) One frantbeo€oastguard sequence. Results computed with (b) our approach,
(c) Horn and Schunck method [1] and (d) Aubert et al. approath [2

C. Global Coherent Motion Estimation for Transparent Moticgg8ences

In this subsection, we present several experiments fospaent motions. The first sequence used is
a synthetic one, the three next ones were artificially cce&ét@m real photographs while the last one is
a natural sequence with transparency and occlusions..
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1) lllustration of the Local MeasurementsThe Figure 5 (a) shows a synthetic sequence with transpar-
ent motion similar to the one used in [5]. The sequence dinassareb4 x 54 x 16 and it is composed
by a moving background (with velocity = [0, —1]) and an overlapped moving transparent square (with
velocity o = [1,0]). Now we demonstrate how local measures could be highlyrdistl by noise in
the acquisition process. By looking only in the distance messs several incorrect movements could be
considered as valid candidates in each position. For instaRigures 5(b) and 5(c) shows the present
movements associated to the minimum distance value, fdstillee distance [3] and the Shizawa distances
[4], see Section IlI-A. The data were noise corrupted withgn&l to Noise Ratio (SNR) equal to 30. As
one can see, the quality of this first approximation is po®r, several incorrect movements are detected
and so that a regularization process is required, whichssudised in the next paragraph.

2) Regularization of Local Measurement#&s mention above, consider the synthetic sequence shown
in Figure 5(a). Gaussian noise has been added in order toagdgahe robustness of our proposal. Figures
5(d)-(i) shows the results for a frame. Note that the methad deal with a strong noise corruption, as
a SNR=10, and shows better performance than the approactie@po [5] (see Figures 5(j) and 5(k)).
Note that our method produces relatively good results eeemafextreme corrupted sequence, as the
one shown in Figures 5(f) and 5(i). For comparison purpoB&gjres 5(j) and 5(k) show the computed
optical flow with the method reported in [5] for the fixed valges basis defined in Section 1lI-B. The
noise-free case is shown in Figure 5(j), and the case SNR=30 Bgure 5(k). In that case, a hard
optimization is performed by using the computationally exgive Gibbs Sampler algorithm. The shown
results correspond to the computed solution after 150,@08tions (about 2.5 hours, in a PC Pentium 1V,
3.0 GHz) and represent 150 times than the computational té@gaired by our approach. Furthermore,
we observe a bad performance of the method in [5] when theesegs are noise corrupted [see result
in Figure 5(k) and compare with the one computed with the gsed method in about 1 minute shown
in Figure 5(1)].

We can verify that our spatial regularization, jointly witlur intra-model competition, develops well
in order to separate the velocities that are present in @amegiigure 6 shows the evolution of the layer
associated with velocity [1,0]. Note that the layer takegyaificantly large value [by growing from small
values (red-yellow) to 1 (blue)] in the square region and tha contribution of this layer is completely
eliminated in the background region.

3) Realistic Texture Sequencds:is important to note that high textured sequences argivela easy
to solve using local motion measures. The real performamn@e method for transparent motion should
be evaluated in realistic textured scenes: recoveringspament motion in sequences with homogeneous
regions presents difficulties because several models n@aflyoexplain the data. We have tested our
approach using a series of experiments, where we use bothesignand real image sequences.

For the aim of comparison, we tested the method in the sequammwn in figure 7, which is similar
to the one presented in [24]. In this sequence, the left imisigroving with velocitya = [1,0] and the
right image is moving with velocityy = [—1,0]. The transparent region corresponds to the area where
the two images overlap. The sequence have dimengiéns 64 x 20 The results for the frame 8 are
shown in figure 7. Figure 7a shows the recovered map for 1 or\&ments, the white regions indicates
the presence of 2 movements and the black ones indicatesdabenge of 1 movement. Figure 7b shows
the recovered multi-velocity field. For the sake of claritye show separately the recovered field for the
velocity [1,0] in Figure 7c and the recovered field for theoad#ty [-1,0] in Figure 7d.

The second one presented here is composed of two photogefdrse (limited textured scene) and a
Mars landscape, see Figure 8. Figures 9(a) and 9(b) showootin@uted optical flow associated to the
minimum distance value for the Stuke and Shizawa distamespgctively. We corrupt the sequence with
a strong noise (SNR=8) (Figure 9 (c)), and the computed w#dgcfield is shown in Figure 9 (d). For
this experiment the distance of Shizawa’s work was used enattach term. Note that the right optical
flow is recovered in all the pixels regardless the high amafimoise. Figure 10 represents the evolution
of one of the two active layers, in this case the one assatiaith the velocity [-1,0]. One can observe
that gaps corresponding to non-textured regions are dtyrridted.
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First row: performance of the two local motion estimators. (a3exfree frame. (b) Non-regularized velocities for [3] distance

30) and (c) for [4] distance. Second and third rows: Ourlte$or different amounts of Gaussian noise, as input we used [3] distan

Fig. 5.

(SNR=

,(h) white = 2 velocities, and black = 1 velocity. In

Figures (d)-(f) velocity fields and Figures (g)-(i) number of motiors pixel: in (g)

1. Last row: the Gibbs8ar (GS) scheme [5]: (j) results in noise-free sequence and

2 and black
30). () same than (d), but sahfplecomparison with (j) and (k).

3 velocities, gray =

Figure (i) white

(k) in a noise-corrupted one (SNR
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Fig. 6. Evolution for the layer associated with velocity [1,0]. For this expent the sequence was strongly corrupted noise (SNR=15).
We show the layer values in the pseudo—color scale shown in the left. Natthéhpresence of the movement [1,0] in the background is
pushed to zero because the spatial regularization and the intra-madpétitton mechanism of the algorithm.

i

(€) (d) (e)

Fig. 7. Results for the transparent sequence (a)

Figure 11 shows the methods performance for the case whetraithgparent region is composed by
different combinations of velocities across the time ancemlthe image layers contains non-textured
regions (realistic ones). Figure 11(a) shows a frame of tla@sparent sequence. The changing velocities
are schemed in Figure 11(b): the background is moving witbhcy [-1,0] and the airplane is moving
with velocity [1,-1], [1,0] and [2,2] in equal time inten&l The obtained multi-velocity vector fields are
shown in Figures 11(c), 11(d) and 11(e). For this experinvemtused the Stukes’s distance [3] in the
attach term.

4) Transparency and Occlusion in a Real Sequeroeorder to show the performance of the proposed
method in a real situation, we shown the results obtaineé fiaal sequence in Figure 12. The sequence
is composed by two robots moving slope down, see Figure 1224b) and 12(¢) The upper-left robot

The data sequence and the results can be downloaded at the public wetitmitevww.cimat.mx/ mrivera/vision/
transparent_sequences/index.html

2the AVI file and the computed flows can be downloaded at the public webhtje//www.cimat.mx/“mrivera/vision/
transparent_sequences/index.html
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is located behind a glass, the lower-right one is locatedantfof the camera and the reflex of the second
one is located into the upper-central part. The associa®dtant vector fields are shown in Figures 12(d),
12(e) and 12(f) for the 8, 12" and 22" frame respectively). The recovered velocities were [1.8] O
pixels for upper-left robot and [-1.5,0.5] for both the laweht robot and its reflex. Note that despite the
fact that the lower right-robot is moving a little faster thiis reflex (easy to deduct form the projection
geometry), both were associated to the same velocity mbdehuse the discrete nature of the velocity
basis.

In this experiment, we perform a spatio-temporal Gaussmaoshing processo(= 0.5) of the input
sequence and we processed only the regions that contalaaisments as is explained below. The static
background was removed automatically by thresholding tfferdnce between consecutive frames, and
then applying opening-closing morphologic operators. Bygighis pre-process, we obtain an activity-
mask that indicates the pixels where a change in time oature the regions where the optical needs
to be computed.

In all previous experiments, we computed a dense optical ifoat most 200 minimization iterations.

VI. CONCLUSION

In this report we have presented an energy cost formulatiarder to estimate multiple motions. The
unknown is a vector valued field that indicates the preseniom®in a particular spatio—temporal position.
Our formulation extends previous works based on layeredtaplow computation, by using a distance
measure suitable for transparent motions and proposingtea+-model competition mechanism proper for
multi-valued solutions. The proposed intra—model contipetimechanism behave for the multi-motion
case, as those used for entropy—control in probability omeagpproaches for single motion, this term is
by itself a novel contribution of this work.

Our formulation allows us to tackle sequences having siogtaultiple layers moving. The optimization
process makes the integration of local velocities inforamatby using suitable diffusion terms. The
performance of the presented approach is demonstratedriliesiz experiments in textured and non-
textured sequences as well as real sequences.

In future work it is planned to focus on the diffusion termslanvestigate how the different velocity
maps may interact together. We wish also to evaluate oupappron test sequences used in psychophysics,
which will certainly suggest some improvement of the curm@odel.
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(@) ' (b)

Fig. 8. Realistic synthetic sequence. (a) limited-texture imzigewith motionu = [1,0]. (b) Rocky Martian landscapds, with motion
v = [=1,0]. (c) transparent generated sequence \gﬂth 311 + Ig

© (d)

Fig. 9.  Transparent motion estimation on a realistic sequence corruptied>aussian noise. (a) Central frame highly noise corrupted
(SNR=8). Velocities associated with the minimum distance for (b) Stuke en&Hhizawa measures (SNR=30). In (d) the result obtained
with the proposed method for the hlgh corrupted sequence in (a) (SNRete that we recovered the right velocities in all positions.

3

he &% _"~. *
lteration 11 Iteration 21 Iteration 31 Iteration 100

Fig. 10. Evolution in the values for the layer associated with the velocity][-1,0
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Fig. 11. Results for a synthetic transparent sequence in which both lb@tyef the background and the velocity of the object changes
across the time. (a) A frame taken from the sequence. (b) Scheneagities: the airplane experiment velocities [1,-1],[1,0] and [2,80 a
the background experiment the velocity [-1,0]. (c), (d) and (e) Badrecovered multi-velocity fields for frames 5, 23 and 39 respégtive

(d) () (f)

Fig. 12.  Experiment with a real transparent sequence. (a)(bjéohés 3*, 12" and 23" of the real sequence: the upper-left robot is
moving slope down behind a glass, the lower-right on is moving slope dofront of camera and its reflex is captured in the upper—central
part. (d), (e), (f) Sampled recovered multi-velocity fields for the eetige frames.



